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1

Functions

Throughout the nineteenth century, group theory was a study of
permutations and substitutions. Group elements were generally referred
to as ‘operations’, being what we would now call transformations
(bijections) of a set to itself. This view of groups suits geometers very
well, and it is the view that we adopt for most of this book.

In this first chapter we establish those properties of trans-
formations which make sets of transformations form groups under
composition and we do this with a set-theoretic rigour unknown in
the nineteenth century. This chapter is the most abstract chapter in
the book, and the student who finds this uncomfortable may start at
chapter 2 provided that he accepts the results of the last question of
chapter 1.

Because we will be establishing a formal definition of a function in
this chapter we will also be providing a background for the terms iso-
morphism, homomorphism and one-one correspondence, all of which
describe special kinds of functions which are of use in group theory,
which are not usually thought of as group elements themselves.

Concurrent reading: Green, chapter 3.



1 Functions

FUNCTIONS N> L

Arrow diagram Graph
N = numbers L = letters
le c 4——— 1f=a
de— "> ea l Y=a
Lib 3f=5H
f 3e— = e@b 4§=c
40—~ ec a T‘_T Sf=c
5./
I 2 3 4 5
f=1{1,a),2,a),(3,b),4c), 5, )} N
N L
1‘\ e ¢ lg=a
3 2g=a
o 28 ——————»eg -5 ‘é’
-5 b g=a
: @.?ﬁg 3 45— b
m'/-c g8 Sa—F—r—1 sg=b
Se
1 2 3 4 5
g=1{(1,a),(2,a),3,a), 4 b), (5 b) domain
Domain N = {1, 2, 3, 4, 5}, Codomain L = {a, b, c}.
Both f and g are examples of functions from N to L,
f:N->Land g:N—~L
NOT a FUNCTION N L
c e
le
26— - 0 b *
3o b a *
40 ecC
5 1 2 3 4 5
NOT a FUNCTION N> L
1e ¢




Injections (one—one) 3

Use the diagrams on page 2, with their implied rules to complete the
following sentence.

A function f: N — L is defined when for each element » of the set
N there 1s.

Use the diagrams on page 2, with their implied rules to complete the
last sentence.
The rectangular array used for the graphs of the functions on page
2 represents the so-called cartesian product N x L. Each element
of N x L is an ordered pair (n, x) with n from N and x from L.
The graph of a function N — L consists of a subset of N x L
with exactly one element (n, x) for each
Which of these define functions of the real numbers R —» R?

(i) x — X%,

(ii) x* — x,
(iii) x — 1/x,
(iv) x — sin x,

(v) x > tan x.

If 4 = {0, 1}, how many different functions, 4 — A, are there?

Injections (one—one)
Draw sketch graphs of the functions R — R given by
(i) x — x* and by (ii) x — x.
Ifx* = v3 does it follow that x = ?
If x> = ), does it follow that x = }?
The dlstmctlon here leads us to call a: R — R defined by

2
a:x > x, a one—one function or injection. We say that f:x +— x’ is
not one-one on R.

Let 4 = {1, 2, 3, 4}.
(1) Exhibit the graph of a one-one function 4 — A4.
(ii) Exhibit the graph of a function 4 — A4 which is not one-one.
(iii) How many functions 4 — A exist?
Let N denote the set of natural numbers {1, 2, 3, . . .}. Draw part of

the graph of the function N — N defined by n — r’. Is this a
one—one function?

What can be said about the rows of the graph of a function if that
function is known to be one—one?
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1 Functions 4

Surjections (onto)
Draw sketch graphs of the functions R — R given by
(Da:x+—e“and (i1) f:x+— x + 1.
Can you always find a real number x, such that a:x +— y for any
choice of the real number y?
Can you always find a real number x, such that §:x + y for any
choice of the real number y?

The distinction here leads us to call § an onto function or sur-
Jjection and to say that « is not onto.

Let 4 = {1, 2, 3, 4}. Exhibit the graph of a function 4 — 4
(i) which is onto,
(i1) which is not onto.

Illustrate part of the graph of the function N — N defined by

the even number 2n — n,
the odd number 2n — 1 — n.

Is this a one-—-one function?
Is this an onto function?

What can be said about the rows of the graph of an onto function?

Let 4 = {1, 2, 3, 4}.

Can you construct a function 4 — A which is one—one but not
onto?

Can you construct a function 4 — A which is onto but not
one—one?

Can you construct a function N — N which is one—one but not onto?
Can you construct a function N — N which is onto but not
one—one?

Conjecture a condition on an arbitrary set 4 such that every one—one
function 4 — 4 must be onto, and every onto function 4 —» A4
must be one—one. Justify your conjecture with the help of gn 8 and
qn 12,

An injection which is also a surjection is called a bijection. In the

context of functions with the same finite set as domain and codomain,
injections, surjections and bijections are in fact indistinguishable.

16

Give examples of functions R — R which are
(i) one-one and onto (bijections),

(ii) one—one but not onto (injections),

(ii1) onto but not one—one (surjections),

(iv) neither one—one nor onto.
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Inverse functions 5

If there exists a one—one function 4 - A4 which is not onto, what can
be said about the set 4?

Composition of functions

If « and f are functions R — R defined by
oa:x+—2x and Bixr>x + 1,

then we define aff: x — 2x + 1.

x5 2x b 2x 4 1
We write this (x)aff = 2x)f = 2x + 1.
Determine (x)fa under a similar definition.
Ifa:4 - Band f:B — C are functions, give a formal definition of

aff: A - C by determining (x)af (the image of x under the func-
tion aff: first a, then f).

The function «f is called the composite of the function « and B.

; _\_~, ; / :
3 / 3
4—=4q 4 /
5
exhibit af.
What formal condition makes «: 4 — B a one—one function or injec-

tion?

Ifa:4 - Band §:B — C are injections, what can be said about
aff: A - C?

Let4 = {1,2,3}and B = {1, 2, 3,4} andleta: 4 — B be an injec-
tion.
Can you construct a function f: B — A such that

(1) Pa is the identity function B — B,

(i1) «f is the identity function 4 — A?
(Under the identity function on the set, each point is its own
image.)

Inverse functions

Let 4 and B be arbitrary sets, with «: 4 — B an injection.
Show how to define 8: B — A such that af is the identity function
on A.
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1 Functions 6

The function f is then called a right inverse for x. So injections
have right inverses.

What formal condition makes «: A — B an onto function or surjec-
tion?

Ifa: A > Band f: B — C are surjections, what can be said about the
composite function af: 4 — C?

LetA = {1,2,3,4}and B = {1, 2,3} andlet x: 4 - Bbe a surjec-

tion.

(i) Can you construct a function : B - A4 such that «f is the
identity function on A?

(i1) Can you construct a function 2 B — A such that fa: B — Bis
the identity function on B?

Let 4 and B be arbitrary sets, with 2: 4 — B a surjection.
Show how to define a function : B — A4 such that fz is the iden-
tity function on B.

The function f is then called a left inverse for a. So surjections
have left inverses.

Let 4 = {1, 2, 3}. Make a list of the bijections 4 — A, or in other
words of the permutations of A.

Find a left inverse for each bijection.

Find a right inverse for each bijection.

For any bijection «: A — B, define a bijection f: B — A such that af§
is the identity function I: 4 — A4 and fa is the identity function

B - B.

Prove that either aff = I:A - A or po = I: B > B, determines f§
uniquely.

So bijections have two-sided inverses.

Closure

If « and f are both bijections 4 — A4, what can be said about
aff: A - A?

Associativity

Leta:4 - B,f:B - Candy:C — D be functions. Use your defini-
tion of qn 19 to show that for each point x of 4,

@ @Byl = ) «(By)),

so that the two functions 4 — D, (aff)y and «(By) are indistin-
guishable.
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Summary 7

The theorem (af)y = a{fy) is called the associative law for
functions under composition.

Use the associative law to prove for four functions «: 4 — B,
B:B— C,y:C — D, é:D — E that a[f(y5)] = [(aB)y]d.

The symmetric group

Let S be the set of all bijections 4 — A.
Justify each of the following claims.
(i) If « and B are in S, then af is in S (closure).
(i) If «, B and y are in S, then a(fy) = (xf)y (associativity).
(iii) /: 4 - A, defined by I:x +— x for all x in 4, is in S (identity).
In = of = aforallain S.
(iv) Foreach «in S thereisa fin Ssuch that aff = Ba = I (inverses)

These four theorems are summarised in the statement that the
bijections of a set to itself form a group under composition. The
group in this case is called the symmetric group on A and is de-
noted by S..

Summary

Definition A function a: A — B, with domain 4 and codomain B is
qn 1 defined when, for each a € 4, there is a unique b € B
such that ax = aa) = b.
Definition A function a: A — B is an injection when, for any
qn8 a,med ax = aa=a = a.
Definition A function a: A — B is a surjection when, for each
gn 12 b € B, there exists an a € A such that ax = b.
Definition The composite (or product) aff of two functions
qn 19 a:4 - Band f:B — Cis defined by (@)aff = (ax)p.
Theorem The product of two composable injections is an
qn 22 injection.
Theorem An injection has a right inverse.
qn 24
Theorem The product of two composable surjections is a
qn 26 surjection.
Theorem A surjection has a left inverse.
qn 28
Theorem A bijection (an injection which is also a surjection) has
gn 30 a unique two-sided inverse.
Theorem The composition of functions is associative.
qn 32
Theorem The set of bijections of a set to itself forms a group
gn 34 under composition. If the set is 4, the group is called
the symmetric group on A and is denoted by S..



1 Functions

Historical note

The modern notion of a function, with domain, and codomain, is
essentially that of P. G. L. Dirichlet (1837). The language and style in
which functions are discussed today owes much to the corporate
twentieth-century French mathematician N. Bourbaki.



Answers to chapter 1 9

Answers to chapter 1

1 A function f: N — L is defined when for each element n € Nthere is a unique
le L with nf=1 Many authors write f(n) =L

2 Exactly one element (n, x) for each n € N.

3 (1) yes, (i1) 1 has no unique image, (iii) 0 has no image,
(iv) yes,  {(v) in has no image.

4 Four.

5x3=y3=x=y. x2=y=>x=+y.

6 (i il iii) 4%,
® 4 I (i) s (iii)
3 3 ——
2 = 2
I f— !
1 2 3 4 1 2 3 4

7 Yes.
8 Each row contains at most one entry.

9 (i) If ¢* = y, y must be positive. (ii) If x + 1 = y, every y is possible.

06, _'L (ii)

4
2

3
2 - ——
1 T— 1

1 2 3 4 1 2 3 4

11 Onto, but not one-one.
12 Each row contains at least one entry.
13 No, no.

14 Yes, inqn 7.
Yes, in qn 11.

15 A must be finite. In this case the number of entries in the graph is equal to the
number of rows. The condition that each row contains at least one entry is
then equivalent to the condition that each row contains at most one entry.

16 () x> x + 1, (i) x> e, (i) x+»> x — x, (iv) x > sin x.

17 A is infinite.



1 Functions 10
18 (x)fa = 2x + 2. The left to right convention which we adopt is preferred by
many algebraists. It has geometrical advantages in matrix algebra.

19 We define aff: 4 — C by (x)aff = (x2)f.
20 1 1

2; E 2

3/3

4

21 xo = ya = x = y.

22 xaff = yaff = xa = ya since f is an injection, = x = y since a is an injec-
tion. Thus af is an injection.

23 (1) No, because there is one point of B which is not an image under a. (ii) Yes.
la, 2o and 3« are well defined and distinct. Let b be the fourth element of
B. Define (aa)p = a fora = 1, 2, 3 and define b8 = 1.

24 Fora € Adefine (aa) = a. Forb e B, b # aaforany a, define b = a1 € A.
25 Given b € B, there exists a € 4 such that ax = b.

26 Given ¢ € C, there exists b € B such that b = ¢ and there exists a € 4 such
that ax = b so aaff = ¢ and af is a surjection.

27 (i) No, because one point of A4 is not an image under .
(if) For each b € B there is at least one a € 4 such that aa = b. For each
b € B, define bf to be one element a € 4 such that ax = b.

28 As in the second part of qn 27.

29 Images of (1,2, 3)are (1,2,3),(2,3,1),(3,1,2),(1,3,2),(3,2, 1), (2, 1, 3).
First, fourth, fifth and sixth bijections are self-inverse. Second and third
bijections are inverses of each other.

30 For each b € B there is a unique a € A4 such that ax = b. Define b = a. If
aff = I, then aaff = aso (ax)f = a. If fa = I, then bfa = b = aa for a
unique a. Now a is an injection so bff = a, and, as before, aaff = a.

31 From gn 22 and qn 26, af is a bijection.

32 x[(@py] = [x(aB)ly = [(x)Bly = (x2) (By) = oA BP].

33 «fB(y8)] = (aB) (¥6) = [(aB)y]d. This kind of argument can be extended to
any finite product, to show that its value is independent of the position of
the brackets.

34 (i) from gn 31, (ii) from gqn 32, (iii) obvious, (iv) from gn 30.



